Metabolic gene expression in fetal and failing human heart.
نویسندگان
چکیده
BACKGROUND Previous studies suggest that the failing heart reactivates fetal genes and reverts to a fetal pattern of energy substrate metabolism. We tested this hypothesis by examining metabolic gene expression profiles in the fetal, nonfailing, and failing human heart. METHODS AND RESULTS Human left ventricular tissue (apex) was obtained from 9 fetal, 10 nonfailing, and 10 failing adult hearts. Using quantitative reverse transcription-polymerase chain reaction, we measured transcript levels of atrial natriuretic factor, myosin heavy chain-alpha and -beta, and 13 key regulators of energy substrate metabolism, of which 3 are considered "adult" isoforms (GLUT4, mGS, mCPT-I) and 3 are considered "fetal" isoforms (GLUT1, lGS, and lCPT-I), primarily through previous studies in rodent models. Compared with the nonfailing adult heart, steady-state mRNA levels of atrial natriuretic factor were increased in both the fetal and the failing heart. The 2 myosin heavy chain isoforms showed the highest expression level in the nonfailing heart. Transcript levels of most of the metabolic genes were higher in the nonfailing heart than the fetal heart. Adult isogenes predominated in all groups and always showed a greater induction than the fetal isogenes in the nonfailing heart compared with the fetal heart. In the failing heart, the expression of metabolic genes decreased to the same levels as in the fetal heart. CONCLUSIONS In the human heart, metabolic genes exist as constitutive and inducible forms. The failing adult heart reverts to a fetal metabolic gene profile by downregulating adult gene transcripts rather than by upregulating fetal genes.
منابع مشابه
Reciprocal Transcriptional Regulation of Metabolic and Signaling Pathways Correlates With Disease Severity in Heart Failure
Congestive heart failure (HF) is a leading cause of morbidity and mortality worldwide. Despite phenotypic similarities characterized by ventricular dilatation and reduced contractility, the extent of common and divergent gene expression between different forms of HF remains a matter of intense debate. Focusing on molecular pathways, we demonstrate that myocardial gene expression in 28 experimen...
متن کاملReciprocal transcriptional regulation of metabolic and signaling pathways correlates with disease severity in heart failure.
BACKGROUND Systolic heart failure (HF) is a complex systemic syndrome that can result from a wide variety of clinical conditions and gene mutations. Despite phenotypic similarities, characterized by ventricular dilatation and reduced contractility, the extent of common and divergent gene expression between different forms of HF remains a matter of intense debate. METHODS AND RESULTS Using a m...
متن کاملMicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure.
BACKGROUND Chronic heart failure is characterized by left ventricular remodeling and reactivation of a fetal gene program; the underlying mechanisms are only partly understood. Here we provide evidence that cardiac microRNAs, recently discovered key regulators of gene expression, contribute to the transcriptional changes observed in heart failure. METHODS AND RESULTS Cardiac transcriptome ana...
متن کاملSignaling pathways responsible for fetal gene induction in the failing human heart: evidence for altered thyroid hormone receptor gene expression.
BACKGROUND We have previously demonstrated that changes in myosin heavy chain (MHC) isoforms that occur in failing human hearts resemble the pattern produced in rodent myocardium in response to hypothyroidism. Because thyroid hormone status is usually within normal limits in these patients, we hypothesized that failing/hypertrophied human myocardium might have a defect in thyroid hormone signal...
متن کاملEffect of High-Intensity Interval Training (HIIT) on Hypoxia-Inducible Factor-1 Alpha (HIF-1α) Gene Expression in Heart Tissue and Insulin Resistance Index in Type 2 Diabetic Rats
Background and Aim: One of the most common metabolic diseases is diabetes with hyperglycemic properties and endogenous insulin dysfunction. This study aimed to evaluate the effect of 10 weeks HIIT on HIF-1α gene expression in heart tissue of rats with type 2 diabetes. Methods: In this experimental study, 36 Wister rats with a mean weight of 200±58g were randomly assigned to control, diabetic,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 104 24 شماره
صفحات -
تاریخ انتشار 2001